ALKALINITY FACT SHEET

Definition: Measure of ability to "*resist change*" in **pH** or the number of hydrogen ions (H^+). Measure of acid neutralizing capacity and the ability to buffer.

Background:

- Without this acid-neutralizing capacity, acid added to a stream would cause an immediate change in pH - amount of free hydrogen ions (H⁺) in water. Extra hydrogen ions make water acidic.
- Amounts of carbonates (CO₃⁻²) and bicarbonates (HCO₃⁻) help determine alkalinity. They react with the free hydrogen ions, maintaining pH levels.
- Extra carbonate and bicarbonate provided by the interaction between **calcium carbonate** (CaCO₃ a component in limestones and sandstones) and **carbonic acid** (H₂CO₃ a natural acid that forms from water and carbon dioxide [H₂O + CO₂ \rightarrow H₂CO₃]).

Alkalinity is influenced by:

Rocks and soils – if an area's geology contains calcium carbonate, the stream will have higher alkalinity.

- ➤ Addition of lime (CaCO₃) soil amendment (correction) often used to decrease acidity.
- Groundwater is well buffered after coming in contact with calcium carbonate rocks.
- Stormwater runoff does not have the chance to react with rocks to become buffered.
- Photosynthesis removes CO₂, thus lowering the chance to form carbonic acid, which reacts with calcium carbonate.

Sand particles held together by calcium carbonate to form a sandstone.

Decomposition / respiration – adds CO₂, increasing the chance to form carbonic acid, which reacts with calcium carbonate.

Carbon dioxide + water + **solar energy** \rightarrow glucose + oxygen

Glucose + oxygen \rightarrow carbon dioxide + water + **energy**

Environmental Impacts:

- Water with low alkalinity is at risk of being affected by increased acidity (hydrogen ions)
- Acid rain can increase acidity if a stream has low alkalinity (New York's Adirondacks & Eastern Canada Lakes).
- Aquatic life cannot tolerate large changes in pH (level of acidity).
- Acid rain, if not buffered, can cause fish kills.

Water Quality:

The EPA considers 20 mg/L alkalinity a minimum for healthy aquatic life.

