Reverse-Coding Items and Calculating Scale Averages and Reliability in JASP

If you gave your participants several items from a scale to assess a specific construct (e.g., the Rosenberg Self-Esteem Scale, Beck Depression Inventory, or any other scale), you will need to calculate a scale composite (or total scale score). You may also need to reverse-code some items first so that for all items a high score denotes a high level of the construct you're measuring. Lastly, it is always a good idea to check your scale reliability and report it. Let's see how to do each of these in JASP:

Reverse-coding items

This data set contains the Rosenberg Self-Esteem Scale ("RSE"). It contains 10 items, 5 of which are reverse-scored. Item 3, for example says "All in all I am inclined to feel that I am a failure" – high agreement indicates *low* self-esteem, so we need to reverse it so that high agreement means *high* self-esteem. All items were measured on a scale from 0 (strongly disagree) to 3 (strongly agree). This means what is currently a 0 should be a 3, 1=2, 2=1, and 3=0. The easiest way to do that is to calculate "3-current score" (because 3-0=3, 3-1=2, etc.). If you had a 7-point scale, you would want to calculate "8-current score". If you had a scale from, say, -3 to 3, you would want to multiply each score by -1 so that a -3 would become a 3, and so on.

≡	Descrip	tives T-Tes	ts ANOV	Mixed Mo	dels Regres	sion Frequer	ncies Facto	Distribu	tions Reliab	ility → +
T	🔒 RSE_1	🔒 RSE_2	RSE_3	🔒 RSE_4	RSE_5	RSE_6	RSE_7	RSE_8	RSE_9	RSE_10 +
1	3	3	0	3	0	2	2	1	0	。 🔾
2	3	3	0	3	0	3	3	3	0	0
3	3	2	1	3	1	2	2	2	2	1
4	2	2	0	2	1	2	2	1	0	0
5	2	2	1	2	2	2	1	1	1	0
6	3	2	0	3	0	2	2	1	1	0
7	3	3	0	3	0	2	2	1	1	1
8	3	2	0	2	0	2	2	2	1	0
9	3	3	2	3	0	3	2	2	1	0
10	3	3	0	3	0	3	3	0	0	0
11	3	3	2	3	2	2	1	2	3	3
12	3	3	1	2	0	2	1	2	1	1

We need to reverse-score each of the 5 variables separately. To do so, we will want to create a new variable each time by clicking on the little black plus sign in the upper right hand corner.

≡	Descrip	tives T-Tes	ts ANOV	A Mixed Mo	odels Regre	ssion Freque	encies Fac	tor Distrib	utions Relia	bility → +
T	🐣 RSE_1	🚴 RSE_2	RSE_3	🐣 RSE_4	RSE_5	RSE_6	RSE_7	RSE_8	RSE_9	RSE_10 +
1	3	3	0	3	0	2	2	1	0	0
2	3	3	0	3	0	3	3	3	0	0
3	3	2	1	3	1	2	2	2	2	1
4	2	2	0	2	1	2	2	1	0	0
5	2	2	1	2	2	2	1	1	1	0
6	3	2	0	3	0	2	2	1	1	0
7	3	3	0	3	Create Compu	ted Column		1	1	1
8	3	2	0	2	0.050 0			2	1	0
9	3	3	2	3 Name:	R2E3_R		_	2	1	0
10	3	3	0	3	P	am		0	0	0
11	3	3	2	3	n	202		2	3	3
12	3	3	1	2 Scal	e 👔 Ordinal	🚴 Nominal 🏾 🌲	Text	2	1	1
13	3	3	1	3 🚺 🌔	Create C	column	x	0	0	0
14	2	2	1	2		\sim		2	1	0
15	2	2	0	3	0	3	2	0	2	2

Doing so will open this window, asking you to give your new variable a name, and to identify it as scale, ordinal, nominal, or text.

Here, I have named it "RSE_3R" to indicate I am creating the reverse of the original item

When you've done so, click on "create column"

≡	Descrip	tives T-T	ests ANO	VA Mixed Mo	odels Regres	sion Freque	ncies Fact	tor Distrib	> +			
Computed Column: RSE3_R												
$+ \bigcirc \div / \land \checkmark \% = \neq < \le > \ge \land \lor \mid \neg$												
	D		•	6	6				lyl 📗			
A												
II Y	′ear								σy			
	Najor								$-\Pi_{y}$			
m	R		~	Comp	ute column				() ×			
T	🐣 RSE_1	🐣 RSE_2	RSE_3	RSE_4	RSE_5	RSE_6	RSE_7	RSE_8	+			
1	3	3	0	3	0	2	2	1	0			
2	3	3	0	3	0	3	3	3	0			
з	3	2	1	3	1	2	2	2	2			
4	2	2	0	2	1	2	2	1	0			
5	2	2	1	2	2	2	1	1	1			
6	3	2	0	3	0	2	2	1	1			
7	3	3	0	3	0	2	2	1	1			
8	3	2	0	2	0	2	2	2	1			
9	3	3	2	3	0	3	2	2	1			
10	3	3	0	3	0	3	3	0	0			

After you've created the new column, JASP wants to know how it should compute it. Because we want to calculate "3-current score", I chose the minus sign from the bar of operations, which then opens up two fields (marked by ...).

Once you click on those, you can
enter a number, and/or click on a variable from the list on the left.

△ Note: mathematical operations are only possible with scale variables. If your variable is identified as ordinal or nominal, JASP will reject it by dropping it below the equation (here RSE_3 was still listed as ordinal, hence it got rejected)

To remove items from the window, highlight and drag them into the trash bin on the right

Once you click "compute column", JASP will tell you the code you entered was "applied" and the new variable will appear in a column at the very end of the data set

	Age Year Major			<u> </u>									
ŵ	R	Compute column											
	000												
T	SE_9	📏 RSE_10	NSE3R	NSE5R	NSE8R	NSE9R	NSE10R	📏 RSE_total	f_x RSE-total_2	$\displaystyle{igwedge} f_x$ RSE3_R	\rightarrow		
1		0	3	3	2	3	3	27	2.7	3			
2		0	3	3	0	3	3	57	2.7	3			
3		1	2	2	1	1	2	20	2	2			

Calculating Scale Averages (or Sums)

Calculating a scale composite (average or sum) essentially follows the steps above, with the exception of the code you will enter. So, click on the little + to the right of your data set, give your new variable a name (here: "RSE_avg"), click compute, and then add all relevant scale variables (include reverse coded ones where applicable) in the calculation window. If you are calculating averages, you'll need to divide by the total number of items, as I've done in the example below. Notice that JASP starts adding a bunch of parentheses. This can't be undone and doesn't change your calculations, of course, it's just confusing to look at. Once you've clicked "compute column", the scale average will be added to the end of your data set.

Calculating Scale Reliability

This analysis can be found under "Reliability" in the main menu. If this option is not visible to you, you may need to add it by clicking on the blue + sign and selecting "Reliability" from the list. Then choose "single-test reliability analysis" under "classical."

Ξ,	Descriptives	T-Tests AN	IOVA Mixed	Models Regre	ession Freque	encies Facto	r Distribution	ns Reliability	Summary Statistic	5			
RSE_9	♦ RSE_10	♦ RSE_3R	♦ RSE_5R	NSE_8R	🐣 filter_\$	NSE_9R	NSE_10R	Class	ical	📏 exhaust_post	📏 exhaust_post2	$\displaystyle \displaystyle \diamondsuit f_{x}$ rse3_r	f_x RSE_avg
	0	3	3	2	1	3	3	2 Single-Test R	aliability Analysis	1	6	5	2.7
	0	3	3	0	1	3	3	2	endonity rendry and	4	5	5	2.7
	1	2	2	1	1	1	2	2 🔶 Bayes	sian	5	4	4	2
	0	3	2	2	1	3	3	2 Single-Test R	eliability Analysis	2	5	5	2.3
	0	2	1	2	1	2	3	19	5	3	6	4	1.9
	0	3	3	2	1	2	3	25	6	2	5	5	2.5
	1	3	3	2	1	2	2	25	5	6	4	5	2.5
	0	3	3	1	1	2	3	23	7	4	3	5	2.3
	0	1	3	1	1	2	3	24	6	2	4	3	2.4
	0	3	3	3	1	3	3	30	7	2	5	5	3

Drag all relevant items into the "Variables" window. Notice that I included the items we previously reverse-coded here.

Under "Single-test reliability", select "Cronbach's alpha", scale M and SD, and (if you wish) individual item statistics as shown.

*Note that JASP defaults to calculating McDonald's Omega, which many statisticians <u>now prefer to Cronbach's</u> <u>Alpha</u> as an indicator of scale reliability. The interpretation is similar, though Omega tends to be slightly higher than Alpha, so some researchers suggest Omega should be > .80 (e.g. <u>Catalan</u>, <u>2019</u>)

Under "individual item Statistics" you have many options, most of which are important for scale development. "Alpha/Omega if item dropped" tells you how much the index of reliability will change if you drop this item. "Item-rest-correlation" is the correlation of the score on a specific question with the total scale score. Many researchers (e.g., Nunnally & Bernstein, 1994) consider values above .30 to be acceptable.

Ξ	Descriptives	T-Tests		Mixed Models	Regression	Frequencies	Fact	or Distributi	ons Reliabilit	y Summary St	• atistics	
Т	Single-Test Re	liability An	alysis		0	00	1	Results				
***	Martins Matins Mation Nationals Prates Dodgers Ginns Dodgers Ginns Padres Rockies Revs Ress_RR RSS_RR RSS_R RSS_R RSS_1 RSS_1 RSS_1 RSS_2		•	Varibbes A R652	and Herms		000 V 000	Single-Test Frequentist Scale Estimate Point estimate Prequentist Indiv RSL2 RSL5	Reliability Reliab	Analysis Cronbach's o 0.824 IIIY Statistics ped 0.828 0.799 0.794 0.793 0.795 0.	mean 2.054 n-rest correlat 0.325 0.251 0.324 0.686 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.652	sd 0.477

If (!) you have reverse-scaled items, there is another option to run these Statistics in JASP as shown here. Specifically, you can enter all original items in the "variables" window and then tell JASP under the "reverse-scaled items" options which ones should be reverse-scaled before conducting reliability analyses. As you can see, the results (with the exception of scale M and SD, as would be expected) are identical, so you can choose which way you want to run these analyses.